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Abstract

We discuss a Galerkin approximation scheme for the elliptic partial differential equatian+-
w?u = fons*c R*+1 Hered is the Laplace—Beltrami operator 6f, w is a non-zero constant
and f belongs toCcZk—2(sn), wherek>n/4 + 1, k is an integer. The shifts of a spherical basis
function¢ with ¢ € H*(8") andt > 2k >n/2+ 2 are used to construct an approximate solution. An
HL(s™)-error estimate is derived under the assumption that the exact salutielongs tcCZk(S").
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of interpolation and approximation of solutions to differential and integral
equations on spheres has attracted considerable interest in recent years; it has also been
applied fruitfully in fields such as physical geodesy, potential theory, oceanography, and
meteorology[7,9,15]. As more satellites are being launched into space, the acquisition of
global data is becoming more important, and there is a growing demand for the processing
and mathematical modelling of such data.

Differential or, more generally, pseudodifferential equations arise in many areas of
earth sciences. Pseudodifferential operators of ordmr the sphere are operators with
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eigenvaluest(¢), ¢ =0, 1, ..., which are asymptotic t¢¢ + 1/2)". A detailed discussion
on pseudodifferential operators and their applications can be foyBgijil,31].

Given a pseudodifferential operat#rand a continuous functiofi which is defined on
the unit spheré” c R"*1, we shall discuss the approximation of solutions of the equation

Yu = fonS".

The approximate solution will be constructed as a linear combination of spherical basis
functions which are derived from zonal kerndis S" x S"* — R of the form

(D(xsy):¢(x'y)s X,yESn,

where¢ is a univariate function defined dr-1, 1], andx - y is the Euclidean dot product
of the position vectors of the points y € $”. For a fixed xthe value of®(x, y) depends
only on the geodesic distance frono y, so the functior®(x, -) is radially symmetric with
respect to the point, and is called a spherical basis function (SBF). A linear combination
of SBFs is calledspherical splineas in[10].

In[10], a collocation method based on SBFs is used to approximate the solutions of a class
of pseudodifferential equations &f. The collocation method requires the approximate
solution to satisfy the differential equations at a given set of points on the unit sphere. In
[15], various Sobolev error bounds for solving pseudodifferential equations on spheres are
given for the collocation method using spherical splines based on the smoothness of the
kernel @(x, y). However, the results ifil5] have a disadvantage that the functignis
required to be in a subspace of thative spacénduced by® (see Section 2).

In this paper, we shall use the Galerkin method, with the approximate solution being
spanned by spherical basis functions. Together with recent results in the theory of inter-
polation of continuous functions by spherical basis functions[548,20]), we can relax
the smoothness of and letf escape ta?(5") for somek >1, which is larger than the
native space. For a domain c R"**, the idea of using Galerkin method for solving el-
liptic partial differential equations in which the approximate solution is constructed from a
linear combination of shifts of a radial basis function on a scattered set of points has been
introduced in34].

We shall restrict? to a class of elliptic differential operators of the formi + w?, where
A is the Laplace—Beltrami operator on the sphere@and 0. This form of operators arise
frequently in the time discretization using the Euler method of the heat or the wave equation
on spheres. With a slight modification, our approach could be used to analyze an arbitrary
invertible pseudodifferential operator of order 2, such as the operator of second-order radial
derivative at the earth’s mean radis which has eigenvalue@ + 1)(¢ + 2)/R? and
is of basic importance in satellite gradiometry (cf., e[$j0,24,28]). The other classes of
pseudodifferential operators such as the Stoke integral operator, the integral of the single-
layer potential, the double-layer potential, etc. are deferred for future research.

We aim to make use of recent resultg29] to derive error estimates for the Galerkin
approximation ors” of the elliptic partial differential equation

—Au(x) + 0%u(x) = f(x), x e S,

wherew is a non-zero real constant,is the Laplace—Beltrami operator ¢fi, and f €
Cc?%(sm) for somek >1.
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The finite-dimensional subspace used to approximate the solution of the PDE will be the
space of shifts of a spherical basis function (see Section 2). Such spaces are used extensively
in the interpolation problem on sphel&s18,19,20]. Assuming that the exact solutiois
in C%(s™), the main result of this paper (Theorem 5.1) is a Sobolev type error estimate for
u—up, whereuy, is the finite element approximationof constructed using SBFs satisfying
certain regularity conditions.

The paper is organized as follows: Section 2 gives the necessary background on spherical
harmonics and the Laplace—Beltrami operator. In Section 3 we outline the weak formulation
of the PDE on the unit sphere, and prove a version of Cea’s lemma on the unit sphere. In
Section 4 we present the error estimates in the supremum norm as well as the Sobolev norm
inzHl(S"). The last section describes some numerical experiments involving data points on
Se.

2. Preliminaries
2.1. Spherical harmonics

A detailed discussion on spherical harmonics can be fourfdi@h In brief, spherical
harmonics are restrictions to the unit sph€tef polynomialsy (x) which satisfy4, Y (x) =
0, whered, is the Laplacian operator &' *1. The space of all spherical harmonics of degree
¢ onS", denoted by, has an orthonormal basis

(Yo :k=1,..., N, O},

where

N, 0) = 1 andN(n, &) = 2 +;ﬂ(; Jlr)[;)(ﬁ:)” Y tores1.
n

The eigenfunctions of the Laplace—Beltrami operator are the spherical harnignicsre
precisely,

—AYy =AYy, Ap=LU+n-—1).

The space of spherical harmonics of ordeor less will be denoted by, := Y7 Vi;
it has dimensionV(n + 1, £). Every functionf € L?(S") can be expanded in terms of
spherical harmonics:

oo N(n,l)
f=Y.> faYu.  fu= [ fYuds,
Sn
k=1

=0

whered is the surface measure of the unit sphere. LRes™)-norm of £, given by the
familiar formula

12
irte=( [ 1ias)
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can also be expressed, via Parseval’s identity, as follows:

oo N(n,t) 172

2= >" > 1ful?

=0 k=1

The Sobolev spacH® := H*(S") on the sphere is defined as follows:

00 N(n,0)
H = (f € LAS") £ 13 = > A+ 0" > 1 ful® < oo}
=0 k=1

2.2. Interpolation of scattered data it

Let X = {x1, ..., x,;} be afinite set of distinct points o§. The density of the seX is
measured by the mesh norm

hx = sup dist(y, X),
yeX
where dist(y, X)= inf,cx 0(y, x). Heref is the geodesic distance 8fi which is defined

asl(x, y) = cos 1(x - y), wherex andy are represented as two unit vectorgdti L. The
separation radius of the s&tis defined via

l .
gx = 5minO(x;, xi).
2]- Lk J

It is easy to see thdty > gx; equality can hold only for a uniform distribution of points
on the circles. Themesh ratiopy := hy/qx >1 provides a measure of how uniformly
points inX are distributed o§”. If there is a constar@ independent ok such thapy <C
then the sek is calledquasi-uniform.

Bizonal functions or$” are functions that can be representegas y) forall x, y € ",
where¢(t) is a continuous function of1, 1]. We shall be concerned exclusively with
bizonal kernels of the type

oo oo
D, y) =dplx-y) =Y arPn+1Lx-y), a>0, Y ar<oo, 6y
=0 =0

where{P,(n + 1;1)}72,, is the sequence afz + 1)-dimensional Legendre polynomials.
Recall from[16] that

1
[ Pin+L:0)P(n+ 1,01 — 15224 = 0fore +# k
-1
and
/1[P( R G R 5]
n ; — = —
b 1SN (n, £)

where|$"| is the surface area of* and|S” 1| is the surface area of* 1.
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Thanks to the seminal work of Schoenbg2y], we know that such & is positive
definite onS”, that is, the matrix := [®(x;, xj)]fflj:l is positive semidefinite for every set
of distinct points{xy, ..., x,;} on $” and every positive integet. When the coefficients
ay are positive for every, we say thatd is strictly positive definite. In this case the matrix
A becomes positive definite, hence invertible, for every set of distinct ppints. ., x;,}
on S" and everyn (see[35]).

In particular, the following interpolation problem admits a unique solution: given a strictly
positive definited, a continuous functiorf on $”, a positive integes:, and a set of distinct
pointsX = {x1, ..., x,} on $", there exists a unique sequence of numt{)efgj”:l such
that the function

fx@) =) ¢;d(x, x)) @
j=1

satisfies the interpolatory conditions

fx(a) = fl), 1<k<m.
Using the addition theorem for spherical harmonics (see, for exafiflep. 18]), we can
write

oo N(n,t)

Py = D POV () Ye(y). whered(t) =

(=0 k=1

|S"]

N(n, )

ag. (3)

Throughout the paper, we make a further assumption&qal~ (1 + A¢)~" for some
7> n/2+ 2, i.e. there exist positive constarftg f, such that

Brd+ 20T <P <P+ AT €20, (4)
Thenative spacénduced by® is defined to be the closure of the set

oo N(n,t)

No:=17eDE:1r15=3 3 1ful?/é@ < ooy,

(=0 k=1

whereD’(S") denotes the set of all tempered distributions defined’on
In what follows, the supremum norm @(S") will be denoted by - ||; for later use, we
also introduce the following norm @2 (s"):

£ 112 == maxtll £ 11, 14° £113, fec®sm.

The main result if20, Theorem 3.24sserts the following:

Theorem 2.1(Narcowich and Ward20]). Let @ be an SBF of the forn3), with $(£)
satisfying conditior{4) for t > 2k >n/2.1f X = {x1, ..., x,,} IS a set of distinct points on
S", f € C%(s™), and fy is defined as irf2), then

— 2k—n/2
If = fxll <Cp 2% "2 flla,
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whereC is independent of and X, andhx andpy are the mesh norm and mesh ratio for
the setX, respectively.

Remark. Ifthe meshratig y is bounded by a constant, then the error estimates only depend
on the mesh norm, i.e.,

If — fxl = OmE "3,

2.3. Positive definite kernels and the power function

A conjugate symmetric, complex-valued kerdele C(S" x ") N H*(S" x S") is
said to bepositive definitaf for every finite subseX = {x1, ..., x;;} C S" of m distinct
points, the matrixA with entriesA; ; = @(x;, x;) is positive semidefinite. In terms of
distributions, the positive definiteness®is equivalent to the followingp, Theorem 2.1]:
for every non-zero distributiow in the dual Sobolev spadd—* (5"),

wew, D) = / w(x) (/ w(y)P(x, y) dS(y)) dS(x)>=0.
n Sn

If (w® w, ®) > 0 for everyw # 0, we will call @ strictly positive definite. The kerndl
is positive definite (or strictly positive definite) if and only if all the coefficientsn the
Legendre polynomial expansion (1) are non-negative (or pos[thd) We define

Dxwx):= 0, Qw,P), xeS"

whered, is the Dirac point evaluation functional. L&t be a finite-dimensional subspace
of functions inC*(s"), and leti{ be a space of all distributions over(5") such that
(w, p) = 0forall p € U. Given a strictly positive definite kerndl, we can define an inner
product ori/* and the correspondent norm as

v, wlp:=TQw, ®), v,weld, andv]e :=+[v,vle, veUr.

The interpolation problem can be put into a distributional framework in the following way.
Let W = {w1, ..., w,) be a linearly independent set of distributions defined’6as"),
and letf be a function inC*($™). Given the data; = (w;, f), j=1,...,m, we seekto
findw e span{W N+ andp € U such thatfy = @« w + p satisfiesw;, fx) = d; for
every 1< j<m, and if f € U, then fx = p= f. The latter requirement that the interpo-
lation process reproducésimplies that the seW|;; = {w1ly., ..., Wiy} Spandd*, the
dual of/.

Suppose that the functiofigenerating the data has the foyin= @ x v + ¢, withg € U
andv € U*. Lety be a distribution defined on functionsﬂ_f‘(S”), for examplen = o,.
In order to estimate the errgt — fx, we need to estimatgd,, f — fx)| for every value
of x. For a generay, in order to estimat&#, f — fx)|, we observe that, by construction,
(w;, f— fx)=0forj=1,...,m; and so if we can find;’s such that; — Zl;l:lc]‘wj
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isinU*t, then

. f = fx)= n—Zc,,wj,m(v—qu—p)

J

= n—chwj,cD*(v—w))
i

= U—w,ﬂ—ZCjwji| . (5)
L J @
If we setn = w e U+ N span{W in (5) then the left-hand side of (5) is 0 and the right-

hand side ifv — w, wlp = 0, since we can take all;’s to be 0. It then follows that
1vl% = [v — wl% + lwl, which yields

lwle < [vle andv —wle < [vie. (6)
By applying Schwarz’s inequality to the right-hand side of (5), and using (6), we obtain
7. f = fOl<Ivleln =Y cjw;le. where " cjw;ly = nly. @
J J

We define thgower functior{26] to be

ngw = min I]n—chwjl]q>:chwj|u=n|u . (8)

J J

Let &, € U ® U be an appropriate conjugate symmetric kernel that approxindatéde
define

do =1 ®n, & — Pyl

Ay = max| (7] @ wj, ® — Py)|

J

and

Az := max|(wy @ wj. P — Py)l.
Js

Theorem 2.2(Narcowich and War@R1, Section 3]).For any set of coefficients satisfying
the constraint

ZCjwjlu =Nlu,
J
we have the following bound on the power function:

(Pg y)?< Ao+ 2lcllid + llclF42, wherellcllz =) el ©
J
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2.4. Norming sets

In order to bound the terriic||1 in the right-hand side of inequality (9), we shall employ
norming sets, the use of which in the context of scattered data interpolation was initiated in
[12].

Let V be a finite-dimensional vector space with ngtm||y and letZ c V* be a finite
set of cardinalityn. We will say thatZ is a norming set foW if the mappingT : V —

T (V) c R™defined byl (1) = (z(u));cz isinjective. The operatdr is called thesampling
operator. The norm of its inverse is given by

1774 = sup{nvnv s max|z(v)| = 1} :
ZEZ

veV

Proposition 2.1(Mhaskar et al[14, Proposition 4.1]).Let Z be a norming set fo¥ with
T being the corresponding sampling operatorZl€ V* with || 1] v+ < A, then there exist
real numberda; : z € Z} depending only ot such that for every € V,

Aw) = az(v), and Y la;|<AIT 7.
z€Z z€Z
3. Weak formulation of the PDE
In this section, we set up the weak formulation for a class of elliptic partial differential
equations on the unit sphere and prove a version of Cea’s lemma for our equation on spheres

(see[2] for a version oriR™).
Let w be a non-zero real constant, and consider the partial differential equation

— Au(x) + 0%u(x) = f(x), xeS" (10)
The weak formulation of this equation is
<—Au + 0?u, v> —(f,v), Vve HY whereu,v) = f uv dsS.
Defining the bilinear form
a(u,v) := <—Au + w?u, v>,
we find that the weak formulation becomes
a(u,v) =(f,v) VYve HL.
Lemma 3.1. There exist positive constanfs>1 and o < 1 such that

2
la(u, VI Cllull gallvll g1 andla(u, u)| = allully;.



Q.T. Le Gia/ Journal of Approximation Theory 130 (2004) 123-147 131

Proof.
oo N(n,t)
a(,v) =Y Y (ke + )iudn
(=0 k=1
oo N(n,t) 172 oo N(n,l) 172
<2 D G+ oPaul? DY e+ oDl
=0 k=1 (=0 k=1
< max(1, o} lul g1l o]l g
We also have
oo N(n,t) oo N(n,t)
a.u) =Y Y (et odag?>mn(l.o?} Y Y Ge+Dag® O
=0 k=1 (=0 k=1

The preceding lemma shows that the bilinear far(n, v) is bounded and coercive, so
by the Lax—Milgram theorem (c{2]), the weak formulation has a unique solution. It is
easy to see tha; (x) := &(x, x;) = ¢(x - x;) isin H1 since we require > n/2 + 2. We
now define a finite dimensional subspacef(s"):

Vy :=spanp;(x) :i =1,...,m}.
The Ritz—Galerkin approximation problem is the following:
finduy, € Vx such thatu(u,, y) = (f,x), Vye Vx. (11)

The following is a version of Cea'’s lemma for unit spheres.

Lemma 3.2. Letu € H1(S") anduy, € Vy be the solution of the Ritz—Galerkin approxi-
mation problen{11), then there exists a constafit> 1 such that

i — upll g1 <C inf Jlu — vl 1.
veVy

Proof. Note thata (u — uy,, y) = 0 for all y € V. In particulara(u — up, v — uy) = 0 for
anyv € Vy. Thus,

alu —up,u—up) =alm —up,u—v+v—up) =alu —up,u —v).
By Lemma3.1, we have
2
allu —upllyy < alw —up,u —up) =a( —up, u —v)
< Cllu —upligrllu — vl g1

Dividing both sides byju — u; | and taking infimum ovev € Vx, we obtain the required
result. O

Lemma 3.3. For a functionu € H%, the following inequality holds:

1/2
el 2 < (Aullz + flell2) >l
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Proof.
oo N(n,t)
M2 =Y D e+ Dliul?
(=0 k=1
oo N(n,b) oo N(n,t)
<Y Wl @ul?
=0 k=1 (=0 k=1
oo N(n,t) 172 oo N(n,t) 172 oo N(n,t)
02~ ~ ~
<D0 D Aluul? D0 laul? +Y Y lanl
(=0 k=1 (=0 k=1 (=0 k=1

= [lAull2llullz + ul3. O

The foregoing lemma enables us to use recent resu[R0into estimate|u — ux| g1,
whereuy € Vy is the interpolant oft on X, i.eu(x;) = ux(x;) forall x; € X.

4. Estimate for ||A°u — Afux||

We shall estimate the error in two steps: firstlyis assumed to be in the native space
Ng¢ and the error will be bounded by a factor|pf| ¢; secondly, we let escape to a larger
spaceCZ(s™) and estimate the error in terms |pf]|| 2.

4.1. Estimate in the native space norm

Before proceeding to the main estimate, we need the Markov—Bernstein inequality for
spherical polynomials of orddt. A proof of this result may be found {22].

Theorem 4.1.If P, € V;, then
IAPL| <Dy L?||PL,

where the constanb,, depends only on the dimension of the ambient space.
Remark. It is known thatD, = 4 (se€[21]).

Corollary 4.1. If P, € Vi ands is an integerthen

IA* L < DL PL.
Next we need to adaf2l, Theorem 6.4{o the cases”.

Proposition 4.1. If the mesh norm oX satisfiesiy < 1/(2L), then for any fixed: there
exist numbers;; (x),1< j <m, such that

m m
> ()Y (xj) =AY (x) forall Y € Vy, and Y |oj(x)|<2D} L.
Jj=1 j=1
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Proof. Let T be the point-sampling operator, namelY) = (Y (x1),..., Y(x,)), and
let A(Y) = A*Y(x). The upper bound fof/| is given by Corollary4.1. Moreover, if the
mesh normhy < 1/(2L) then| T || <2 (se€[12]). The required result now follows via
Proposition2.1. [J

Defining the ordinary differential operator

d d d\? d
L=—A-H)@EM2_ 1?2 = —1-1>)(— t—,
( ) dt( ) dt ( ) dt o dt

we recall from[17, p. 38]that the(n + 1)-dimensional Legendre polynomials(n + 1; t)
satisfy the differential equation

LPi(n+1:t) = A Pe(n+1;1).

The operator can be iterated a&**1P = £(£* P) for k > 1. We approximate the kernel
@ by the truncated kernab; :

L
BLx,y) =p(x-y) =Y aPin+1x-y),
=0
which belongs to the spadg ® V.

Lemma 4.1. Let ¢(¢) be a univariate function which can be expanded as a series of Leg-
endre polynomials as ifl). If ¢(r) € C&+2)[—1,1],then

LG — ¢ 1) L P

kr g _ .
L[ — pp1(x - y)I< L+n—12% S(L+n—12"

Proof. We have

15 - y) = Lhpp (e p)I< D0 Marl P+ Lix - ).
(=>L+1

Since the Legendre polynomials satisfy the inequalityn + 1;1)| < Pe(n+1;1) = 1 for
everyr in [—1, 1] (se€[17, p. 15]), we have

D P+ 1) < Y ZgarPe(n + 1:1)

>L {>L
<(L+n-1)7% Z )ulfjang(n +1;1)
{>L
Lo — 1)
(L+n—-1)%

The lemma follows by observing that*/[¢ — ¢, (L)< L ¢p(1). O
We are now in a position to obtain an error estimateAdu — uy), whereuy is the
interpolant ofu on the setx.
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Proposition 4.2. Suppose is a positive definite kernel of the fo®), ¢(r) € C*[—1,1],

and letX be a finite set of distinct points dff with mesh nornkx <1/(2L). If u belongs
to the native spac#/¢ anduy is an interpolant of the forn2) which interpolates on the
setX, then there is a constad > O independent of and X so that

00 1/2
1A% — Auyl|<C (Z HON, z)ﬂ%) lullo.

{>L

Proof. Recalling the distributional framework set out in Section 2.3, we consider the fol-
lowing particular linear functional:

nu) = A u(x).

For a given poink € $", we shall use inequality (7) to estimat&u (x) — A*ux (x)|. Now
Theorem2.2and Propositior.1 provide the following bound:

(P W)2< Ao+ 4DSL% A1 + ADZF L% A,
where theA;’s are given by
Ao = L% (1) — LZ ¢ (D)1,
Ay =max|Li¢(x - x;) = LS (x - X)),
J

and

A = rTJF%XIQ')(Xk - Xj) — ¢p(xg - xj).
Applying Lemmad4.1to bound these quantities and then using the resulting bounds in the
power-function estimate above, we obtain

ADS L2s 4D23L4s
P’? 2 < (1 n n

Fo.w) ( R v T

< CLY[$— 1),

whereC is a constant that depends only @@ands. The required result follows from the
relation

) LZ[$— d1(1)

1 o~
L219— ¢l = o S IEHONG 0. D

n
|S {>L

We now derive a simple consequence for our choice of kernels.

Corollary 4.2. Suppose(r) € C¥[—1, 1],and$(€) ~ (14 A¢) " forsomer > n/2+2s.
Assume that the mesh nokm of the setX satisfies the conditioh/ (2L +2) <hx <1/2L.
Then there exists a constafit> 0 independent af and X so that

1A — A ux | <ChY "% lulg.
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Proof. Since(1 + i¢) <C¢2 andN(n, £) = O(¢"~1) we have

2~ 00
Z $L)N (n, E))LES<C/ KA g copn
{=L+1 L

The result follows directly from Propositich2 and the condition

1/(2L+2)<hx<1/2L. O
4.2. Estimate in the supremum norm

We first state several results concerning approximation of functiorf' diy spherical
harmonics iV, . These results, obtained by Pawd®2,23], involve the notions of spherical
mean and spherical modulus of continuity (see below). We shall use Pawelke’s results later
in the section.

Letu € C(S"), x € 8", and 0 < h<n. We define the spherical mean wfover the
spherical cap of radius centered at as follows:

1
_— d
|S"=T|(sin hyr—1 fx.y:cosh “() 02 (),

whereda, is the volume element correspondingitoy = cos(k). The spherical modulus
of continuity ofu is defined to be

Thu(x) ==

o, &) = sup ||Thu —ul, &>0.
O<h<e

Givenu € C(S™), we define the distance fromto the polynomial spac¥®y in the usual
manner:

distw,Vy) = inf |u— P].
PeVy

Theorem 4.2(Pawelke[22,23]). Supposer € C%(S") andL € Z*. There is a constant
M, independent of both and L, for which

dist(u, Vi) < Mo(u; 1/L), and dist(u, Vi) <ML~ |Afu|, keZzZ™.

The remaining approximation theorems that we will use in the proof deal with the norms
of iterates of4 applied to the best and near-best approximants fram

Theorem 4.3(Pawelke[22, Satz 4.4]).Supposer € C%(S"), and letP; be the best ap-
proximation tou fromVy, i.e., |lu — Pr| = dist(u, V;). Then there exists a consta@t
independent of and L, for which

AR Pl < Cl AR

The preceding theorem has been extendd@0hto a class of near-best approximants
fromVy.
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Theorem 4.4(Narcowich and War@0, Corollary 2.5]).Letu € C%(5") and letQ; €
Ve forL =1,2,..., be asequence of polynomials satisfyjmg— QO || < K dist(u, V),
with K independent af and L. Then there is a constaudty, independent of and L, such
that

IA* Q|| < Cl A ul.

In the proof of the main result, we need to construct for every C(S"), spherical
harmonics that are both near-best approximanisftom ), and also interpolate on the
point setX. This is precisely the content of the following theorem:

Theorem 4.5(Narcowich and War¢R0, Theorem 3.1]).Let X C S” be a finite set of dis-
tinct points with separation radiugx and letfp > 1. If we setL = [x((%fll)ﬂ with M
as in Theoren#.2,then foru € C(S™) there exists a spherical harmon@; € V; that

interpolatest on X and also satisfies the estimate

lu — QLI < (1+ Pydist(u, V).

Lemma 4.2. Suppose: € C%(S"), wheres is a positive integerand let P; be the best
approximation tou fromVy, i.e., lu — Pr| = dist(u, V). Then there is a constand,
independent of and L, such that

IASu — AS P || < C dist(Au, Vp).
Proof. We prove the lemma by induction anWe consider the case= 1. Note that ifQ
is a spherical harmonic of degréefor L > 0, then sois\Q, because spherical harmonics
are eigenfunctions off. Therefore, the space of all spherical harmonics of degtde

except constants, denoted By\ Vo, is isomorphic tad (V. \ Vo). Let Q be a polynomial in
V1 without constant term so thatQ is the best approximation #w. So

|Au — AQ| = dist(Au, Vy).
Let R € V; be the best approximation to— Q, so that
IR — (u — Q)| = distu — Q, Vy) = dist(u, Vy).
SincePy is unique, we obtai’, = R + Q. By the estimate in Theoreth3,
IAR| <C||Au — AQ| = C dist(Au, Vy).
Thus
lAu — APL|| < ||Au — AQ|| + ||AR| <2C dist(Au, Vy).
Now lets > 1, and suppose that there is a constagso that
IA Y — AP | < Codist(AS ™ Lu, Vy).
Using the induction hypothesis fdw andAQ, we have
1A Au — A*TIAQ| = |A*u — A* Q|| < Co dist(A*u, V).
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Using Theoren#.3 once again, we have
AR <C1l|A'u — A° Q|| < C2dist(A’u, Vy),
whereC, = C1Co. Thus
[A%u — AP <||A'u — A" Q|| + |A°R|| < C3dist(A’u, V1),

with C3 = max(Cgp, C2). O
We extend the result of the previous lemma to a broader class of near best approximants
tou.

Lemma 4.3. Suppose that € C%(5") and Q; is a near best approximation to from
V. in the sense that there is a consta@htindependent of. andu, so that

lu — QrII<K dist(u, Vy).
Then there exists a constafiy so that for any integer <k,
1A — A° QI < CoL ™22 Abul|,
Proof. Let P, be the best approximation tofrom V. The preceding lemma implies the
estimate
|ASu — AS P || < C dist(A’u, Vy).
By the Markov—Bernstein inequality,
IA*PL = A*Qull < DLLZ || PL — QL]

<DILZ(IPL —ull + lu — QL)
< DSLZ(K + 1)dist(u, V1).

Combining the two estimates above, we obtain

AU — A Qrll < |A°u — A PL|| + |A"PL — A Q||
< Crdist(A’u, Vi) + DL dist(u, Vy),

whereD := D} (K + 1). Now by the second part of Theoreh®,
dist(A*u, Vi) < ML~ 242 | ARy

and
dist(u, Vi) < MaL ™| A*u]],

so the required result follows by settid} = maxCMy, DMo}. O
Now we adapt the proof if20] to estimate|u —uy || foru € C%(s"), whichis in general
a larger space of functions than the native space induced by the Kernel

Theorem 4.6. Let® be an SBF satisfyin@(ﬁ) ~ (1+4¢) "andsupposethat> 2k >n/2+
2s. Let X be a quasi-uniforn{i.e. the mesh ratio is bounded)screte subset of" with
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mesh nornhy. If u € C%(8") anduy € Vy interpolatesu on X as in(2), then for any
nonnegative integer < k — n/4, there exists a constart independent of and X such
that

‘ 2k—25—n/2
1A% — A ux || <CRA 2" lulx.

Proof. Applying Theorem4.5with f = 3, we obtain aP; € V; that interpolates on X,
whereL = [2M/qx1, M is as in Theorerd.2, and

lu — Pr|| <4dist(u, V).
Let Px be the interpolant of; in the spacé/x; then
A% — A'ux || <I|A'u — A°Pr|| + |A° PL — A° Px || + [|A*(Px —ux)l. (12)

SincePx(x;) = Pr(x;) = u(x;) = ux(x;) forallx; € X and bothPy anduy lie in the
same finite-dimensional spaég, we have R = ux and the final term in the previous
inequality vanishes. By Lemm&3, we have the estimate

AT — A® P || < CoL ™22 |u | .

Now the assumption 06(6) guarantees that Corolla®.2 is applicable and, since the
norms|| - |l and| - || g+ are equivalent, we can estimate the second term on the right hand
side of (12) as follows:

IA* P — A Py || < Cihl 22| PL .

Using the definition of the Sobolev norm and the fact tAatis a polynomial, we obtain
1Pl e <4 ) 2RI Pl e <2418 1M2(L A+ 20) 7274 Pl

Since|| P || <5]jul|| by assumption, Theoreh4implies that|] A* P, | < R||A*u||, so that
I Prll2e < max{s, R}|lull2k-

So, if we setC, = 2¢|5"|1/2max(5, R} then

IAS P, — A’ Py || < Cohy 72 L+ 20) Y% ¥ ||ull . (13)

From (12), (13) and.;, = L(L +n — 1)< CL?, we find that

1A — Aux || < (C1LE % 4+ CoL™ 2 h% 72 u||
< (CLL2H2=2 4 CoL 2R 2 %) ||
< [Ca(hx LY2V2=2 4 Co(hyx L) 2 n2 272 |y .
Using the factthal. = [2M /qx1 = [2Mpy/hx], we get

24252k —2k\ 5 2k—n/2—2s
IA U — A'ux || < (Capy #7272 + Caplr Zony 272 lu ok
Finally, sincepy > 1 andt > 2s + n/2, it follows that

) ] — 2k—n /2—2s
1A — Aux | <Cp5 ZR% > P ). O
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5. The main theorem

Recall from Section 3 the following weak formulation of (10):
<—Au + o?u, v) =(f,v), VYveH (14)

and the fact that its solutiom is being approximated by;,, which, in turn, satisfies the
following condition:

up € Vx :=spanfP(x;, ) : x; € X}
such that
(—Auh + ?uy, x) =(f.n), VyeVx. (15)

Having assembled all the necessary ingredients, we are now ready to give our error bound
foru — uy:

Theorem 5.1. Assume that the exact solutianof the weak formulatiorf14) belongs to
C?%(s™). The approximate solutiom, of the Ritz Galerkin approximation problefhS) is
constructed from shifts of a kernel of the fo(&) satisfying¢(¢) ~ (1 + A¢)~" (for some
7 > 2k) and a quasi-uniform discrete s&t c S with mesh nornmkx. Then there is a
positive constan€ independent of and/x such that

2k—n/2—1
lu — gl g2 <CHE 27w 4.

Proof. By Theorem#.6, we have a consta@iy > 0 so that

1A — Auxll2< /1S I1Au — Aux || < Cahy ™2 2 jull.
By Theorem2.1we also have

lu = wx 2 < VISl — ux | < Cohy "2 el k.
So by Lemma3.3, we conclude that

2k—n/2 2
lu — ux |l g2 <Csh "%/ 1+ b2 lullx.

Now, using Cea’s lemma (Lemn®2), we obtain the final estimate

2%—n/2 2
lu —upllgr < Cllu —uxllgr <CCahy " 1+ hyllull2

2k—n/2—-1
< Cah¥ ™ Y )|z

In the proof,Cy, fork = 1, 2, 3,4, are generic constants independent ahdX. [

6. Implementation on $?

Problems arising in satellite tracking and physical geodesy are still challenging because
of the nature of the acquired data. If the data are localized, approximation problems can be
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solved through application of methods designed for two-dimensional Euclidean space (cf.,
e.g.,[8] and references therein). However, problems involve essentially the entire surface
of the sphere, or a sufficiently large part that modeling the data as arising in two space is no
longer appropriate. In this section, we present only a test example to illustrate the Galerkin
method ons? in which the approximate solution is constructed from various scattered sets
X with different cardinality. It is assumed that the data is available globally with sufficient
density and uniformity. In the implementation, there are two main issues to be addressed:
the quadrature rule used in approximating the bilinear fo¢m v) and the construction of
spherical basis functions.

Since®(x, y) is a zonal function, we can reduce the surface integrals in the bilinear form
a(P(x;, ), P(xj, -)) into one-dimensional series of Legendre polynomials as discussed in
Section 6.1. For the surface integrals @(x;, -))’s, we have to derive a quadrature rule
over the surface of the unit sphere as in Section 6.2.

6.1. Inner product of two zonal functions

Let ¢(r) andy(¢), for t € [—1, 1], be two zonal functions of2. We can expana(r)
andy(¢) in terms of series of Legendre polynomials

Gty =Y arP(t). Y(t) =Y bePu(t),

=0 =0
where
[T ewPndr 2041
= = t)Py(t) dt 16
[P ar 2 J- d)() " (o)
and
+1
P
Y OP(ndt 20 +1 W)P[(t)dt an

a2 -

In the approximation of the bilinear forat(u, v) = (—Au + w?u, v), we need the following
useful lemma

Lemma 6.1. Let Y(x,y) = Yy(x - y) and ®(x, y) = ¢(x - y) be two zonal functions on
52, For two distinct fixed pointp, ¢ € S, the following relation holds:

f G(p - Y(q - x)dS(x) = 4n2 Pe(p - q).

ay
7 (2 + 1)

Proof. We have

P(p-x) = Zaepe(P x) =4n Z

=0

(26 + 1, Z Yo i (p)Yer(x)
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and

Yig-x) = me(q x) = 4n2 (2£+1) Z Ye (@) Yex(x).

=0

Since{Yyr : £ =0,1,2,...;k = —£...¢} is an orthonormal set, we can use Parseval’s
identity to obtain

agby

f P(p - XY (q - x>ds<x>—16w22 Gt

7 Z Yer(p)Yer(q)

b 20 +1
:167122 agby  (20+1)

P, .
S @+12  4n t(p-4q)

o aghy
=47TZ(2£+1) Pup-q). O

For numerical approximation, the integration in (16) and (17) can be approximated by a
Gaussian quadrature formula over the intefval, +1]. If the functiong has¢(£) ~ (1 +
J¢)~" as in condition (4) themy ~ (1 + A¢)~7(2¢ + 1) ~ £~2*t1, We require that > 1/2
and the one-dimensional Gaussian quadrature formula used in (16) and (17) should be exact
up to polynomials of degree. In our numerical experiments, = 6000 andt = 9/2, so
the smallest absolute valuge being computed is about 18°.

6.2. Quadrature formula

We seek a spherical quadrature rule that integrates exactly all polynomials up to a certain
degreeL, i.e., we seek a set of points := {54, ..., ny} and a set of positive weights
{wq, ..., wn} (Fig. 1) such that

N
/sz P(x)dS = ijp(nj), VP e V.
=1

If all the weights are equal, namely; = 4n/N forall j = 1,..., N, then the seE'is
called a spherical-design, se§l,4,29]. It can be shown that a pair of antipodal points, the
vertices of a regular tetrahedron, the regular octahedron, and the regular icosahedron give
1-, 2-, and 5-designs, respectively. If the weights are not equal and the points are chosen
independent from the scattered data then there are many research directions which are still
open[3,13,25,30].

The following existence theorem, provedid], provides in principle a possible quadra-
ture formula forS”.

Theorem 6.1. Let L be an integer withL. </ hz, wherehz is the mesh norm of the set
E anda is some real constant. Then there exist nonnegative wefghts j = 1,..., N}
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x 1073

0 500 1000 1500 2000 2500

i
Fig. 1. Weights associated with 2500 quadrature points. The associated quadrature rule integrates exactly all
polynomials up to degree 45.

such that

N
f P(x)dS=Y wjP(n;), VYPeVp,
n j:l

and the cardinality of the set of weights, is comparable to the dimension Jf .

Here we shall use the set of points that is constructed by dividing the surface of the
sphere intaV cells of roughly equal area (s§E3]). Note that the set of quadrature points
Z are constructed independently from the set of scatteredXlafée investigate only the
dependency between the rate of approximation and the mesh/npohthe scattered set
X used to construct the approximate solutign

Givenw := {ws, ..., wy}, the weights are computed by solving the following quadratic
programming problem:

min w - w’
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subject to the following linear constraints:

N

> wiYer(n;) = 4n¥oodr0. €£=0.....L, —L<k<L,
j=1

wj>0,j=1,....N.

This optimization program can be solved numerically using the subrogtiadprog in
MATLAB 6.0. The strategy is to start with a high value bf sayL = |+/N — 1], and step
it down by 1 until we reach a value @f for which we obtain a solution.

6.3. The spherical basis functions

In [32,33], Wendland introduced a class of locally supported positive definite radial basis
functions defined oft"*1. These functiong (x) are rotation invariant and are thus function
of |x| only. So the corresponding convolution kerggk — y), x, y € ", is a function of
lx — y| = /2 — 2x - y. We may therefore define a function

D(x,y) = Qx-y)=x—y), x,yes" (18)

Note that®(x, y) inherits the property of positive definiteness fr¢mrand$(£) ~(A+A)7"
for somer > 0 (see Section 4 if20]).

For our numerical study, we use the functipr) = (1—r)8 (323 + 252 +8r+1) €
CS(R3), wherer = /2 —2x - y. Itis shown in[20] that the kernelP(x, y) induced by
Y (r) satisfiesp(£) ~ (1 + 4¢)%/%3 ~ ¢, The support ofy(r) has radius 1, and hence for
a fixed x € $2, the support ofP(x, y) is {y € S2 : cosO(x, y)>1/2}, i.e., the spherical
cap of radiusr/3 centered ak. If we scale the support af by a factor ofa > 0, the
strictly positive definiteness @b is unchanged, but the rate of approximation will change
according tox. The detailed results will be presented in a forthcoming paper.

Under the assumption that the collected data is abundant on the global scale, the sets
of scattered data point® used in the construction of the SBFs are minimized energy
points[30]. These points are generated using optimization packages, and are available at
http://www.maths.unsw.edu.au/~rsw/Sphere.

6.4. Numerical results

In our numerical experiments, we consider two examples: in one example the function
f is a zonal function (i.ef (x) depends only on the geodesic distance from S? to the
north pole(0, 0, 1)7) and in another, the functioyi is a spherical harmonic.

The quadrature rule used in the approximation of the bilinear fgrm) and the surface
integral( f, -) are fixed, only the scattered seétfor the SBFs varies in size.

The experiments use various valuesagfnamelyw = 0.01;0.1; 1.0; 10. The errors
are computed over a grid of 10* points on the sphere. The, errors are computed
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Table 1
Errors for Example 1
w m=|X| hx(deg) Rate €co Rate
0.01 64 17.5451 0.1324
225 9.1750 1.9123 0.0146 9.0684
400 6.5092 1.4095 0.0026 5.6154
784 5.3452 1.2177 9.3355e- 04 2.7851
900 5.0092 1.0670 9.9907e- 04 0.9344
0.1 64 17.5451 0.1294
225 9.1750 1.9123 0.0078 16.5897
400 6.5092 1.4095 0.0024 3.2500
784 5.3452 1.2177 5.0605e- 04 4.7426
900 5.0092 1.0670 5.4645e- 04 0.9261
1.0 64 17.5451 0.1105
225 9.1750 1.9123 0.0077 14.3506
784 5.3452 1.7165 5.0050e- 04 15.3846
900 5.0092 1.0671 7.3199e- 04 0.6837
1681 3.6278 1.3808 9.0342e- 04 0.8102
10 64 17.5451 0.1193
225 9.1750 1.9123 0.0079 15.1013
400 6.5092 1.4095 0.0024 3.2917
784 5.3452 1.2177 6.8522e- 04 3.5025
900 5.0092 1.0670 0.0020
as follows:

oo 1= ?G%X (&) — up(O.

Example 1. We aim to solve numerically the following differential equation:
—Au + 0?u = —1121 — /2= 22)4 (252 — 9z + 42v/2 — 27 — 15),

where(x, y, z) € R® are points satisfying? + y2 + z2 = 1. The exact solution of the
differential equation is = (1— /2 — 2z)i(35(2— 27) 4+ 18y/2 — 2z + 3) which belongs
to C*(52). In this example, sinc¢ is a zonal function, the integrbf, qﬁj) is approximated
by a one-dimensional Gaussian rules used in computing) as mentioned in Section 6.1.
The exact solutiom belongs toC#(52), so Theoren.6 predicts the errorfu — uy, |1 is
about(’)(h‘;(_z/z_l) = O(h%). Table 1 shows that fap close to 1.0 angx not too small
(the condition number of the matrix with A;; = [a(¢;, ¢;)]is sensitive to the separation
radiusgy of the discrete seX), the supremum erroft — uy|| can achieve up t(i)(hg‘(),
which implies that the erroru — uy | 41 could be improved t@ (43).

Example 2. We consider the approximation of the following differential equation:

—Au 4 0?u = (2 + w?) sin(¢) cos@), ¢ €0, 7, 0€[0,2n].
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Table 2

Errors for Example 2

w m=|X| hx (degree) Rate €0 Rate

0.01 784 5.3452 1.4326e—- 05
900 5.0092 1.0671 26977e— 06 5.3104
1600 3.7585 1.3328 1.0766e- 06 2.5058
1681 3.6278 1.0360 1.1171e- 06 0.9637
2500 2.9891 1.2137 1.9940e- 06 0.5602

0.1 784 5.3452 3.6315e- 06
900 5.0092 1.0671 3.4122e- 06 1.0642694
1600 3.7585 1.3328 5.2482e- 07 6.5016577
1681 3.6278 1.0360 5.2527e- 07 0.9991433
2500 2.9891 1.2137 5.0058e- 07 1.0493228

1.0 784 5.3452 4.9329e— 06
900 5.0092 1.0671 3.0495e- 06 1.6176094
1600 3.7585 1.3328 6.7267e- 07 4.5334265
1681 3.6278 1.0360 6.0382e- 07 1.114024
2500 2.9891 1.2137 46939e— 07 1.286393

10 784 5.3452 6.4366e— 06
900 5.0092 1.0671 3.9394e- 06 1.6339036
1600 3.7585 1.3328 1.7974e- 06 2.1917214
1681 3.6278 1.0360 1.6789%e- 06 1.0705819
2500 2.9891 1.2137 1.1070e- 06 1.5166215

The exact solution i%(¢, 0) = sin(¢) cos@). In this example, the surface quadrature
mentioned in Section 6.2 is used to approxin(ateﬁj). The exact solution is a spherical
harmonic, sa belongs to the native space associated with the SBFs (cf. Section 6.2), which

is H%/%(52), and hence by Corolla#.2, the|u — uy, || 1 errors should bé)(hi/zfz/zfl) =

O(hi/z). Table 2 shows that under appropriate conditionsfandgx, the supremum errors
llu —uy|| can achieve up t@(h‘,‘(), which implies the errorfu —uy || ;1 could be improved

to O(h3).

Tables 1 and 2 show the errors between the exact solution and the approximate solution
obtained via the Galerkin method using the SBKs, y) centered akX as in (18).
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