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Abstract

We discuss a Galerkin approximation scheme for the elliptic partial differential equation−�u +
�2u= f onSn ⊂ Rn+1. Here� is the Laplace–Beltrami operator onSn, � is a non-zero constant
andf belongs toC2k−2(Sn), wherek�n/4 + 1, k is an integer. The shifts of a spherical basis
function� with � ∈ H �(Sn) and�> 2k�n/2+2 are used to construct an approximate solution. An
H1(Sn)-error estimate is derived under the assumption that the exact solutionu belongs toC2k(Sn).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of interpolation and approximation of solutions to differential and integral
equations on spheres has attracted considerable interest in recent years; it has also been
applied fruitfully in fields such as physical geodesy, potential theory, oceanography, and
meteorology[7,9,15]. As more satellites are being launched into space, the acquisition of
global data is becoming more important, and there is a growing demand for the processing
and mathematical modelling of such data.
Differential or, more generally, pseudodifferential equations arise in many areas of

earth sciences. Pseudodifferential operators of ordert on the sphere are operators with
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eigenvalues�(
), 
 = 0, 1, . . . ,which are asymptotic to(
+1/2)t . A detailed discussion
on pseudodifferential operators and their applications can be found in[3,9,11,31].
Given a pseudodifferential operator� and a continuous functionf which is defined on

the unit sphereSn ⊂ Rn+1, we shall discuss the approximation of solutions of the equation

�u = f onSn.

The approximate solution will be constructed as a linear combination of spherical basis
functions which are derived from zonal kernels� : Sn × Sn → R of the form

�(x, y) = �(x · y), x, y ∈ Sn,
where� is a univariate function defined on[−1,1], andx · y is the Euclidean dot product
of the position vectors of the pointsx, y ∈ Sn. For a fixed xthe value of�(x, y) depends
only on the geodesic distance fromx toy, so the function�(x, ·) is radially symmetric with
respect to the pointx, and is called a spherical basis function (SBF). A linear combination
of SBFs is calledspherical splineas in[10].
In [10], a collocationmethodbasedonSBFs is used to approximate the solutions of a class

of pseudodifferential equations onSn. The collocation method requires the approximate
solution to satisfy the differential equations at a given set of points on the unit sphere. In
[15], various Sobolev error bounds for solving pseudodifferential equations on spheres are
given for the collocation method using spherical splines based on the smoothness of the
kernel�(x, y). However, the results in[15] have a disadvantage that the functionf is
required to be in a subspace of thenative spaceinduced by� (see Section 2).
In this paper, we shall use the Galerkin method, with the approximate solution being

spanned by spherical basis functions. Together with recent results in the theory of inter-
polation of continuous functions by spherical basis functions (see[5,18,20]), we can relax
the smoothness off and letf escape toC2k(Sn) for somek�1, which is larger than the
native space. For a domain� ⊂ Rn+1, the idea of using Galerkin method for solving el-
liptic partial differential equations in which the approximate solution is constructed from a
linear combination of shifts of a radial basis function on a scattered set of points has been
introduced in[34].
We shall restrict� to a class of elliptic differential operators of the form−�+�2, where

� is the Laplace–Beltrami operator on the sphere and� 
= 0. This form of operators arise
frequently in the time discretization using the Euler method of the heat or the wave equation
on spheres. With a slight modification, our approach could be used to analyze an arbitrary
invertible pseudodifferential operator of order 2, such as the operator of second-order radial
derivative at the earth’s mean radiusR, which has eigenvalues(
 + 1)(
 + 2)/R2 and
is of basic importance in satellite gradiometry (cf., e.g.,[10,24,28]). The other classes of
pseudodifferential operators such as the Stoke integral operator, the integral of the single-
layer potential, the double-layer potential, etc. are deferred for future research.
We aim to make use of recent results in[20] to derive error estimates for the Galerkin

approximation onSn of the elliptic partial differential equation

−�u(x)+ �2u(x) = f (x), x ∈ Sn,
where� is a non-zero real constant,� is the Laplace–Beltrami operator onSn, andf ∈
C2k(Sn) for somek�1.
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The finite-dimensional subspace used to approximate the solution of the PDE will be the
space of shifts of a spherical basis function (see Section 2). Such spaces are used extensively
in the interpolation problem on spheres[5,18,19,20]. Assuming that the exact solutionu is
in C2k(Sn), the main result of this paper (Theorem 5.1) is a Sobolev type error estimate for
u−uh, whereuh is the finite element approximation ofu, constructed using SBFs satisfying
certain regularity conditions.
The paper is organized as follows: Section 2 gives the necessary background on spherical

harmonics and the Laplace–Beltrami operator. In Section 3we outline theweak formulation
of the PDE on the unit sphere, and prove a version of Cea’s lemma on the unit sphere. In
Section 4 we present the error estimates in the supremum norm as well as the Sobolev norm
inH 1(Sn). The last section describes some numerical experiments involving data points on
S2.

2. Preliminaries

2.1. Spherical harmonics

A detailed discussion on spherical harmonics can be found in[16]. In brief, spherical
harmonicsare restrictions to theunit sphereSn ofpolynomialsY (x)whichsatisfy�xY (x) =
0,where�x is theLaplacianoperator inR

n+1.Thespaceof all spherical harmonicsof degree

 onSn, denoted byV
, has an orthonormal basis

{Y
k : k = 1, . . . , N(n, 
)},
where

N(n, 0) = 1 andN(n, 
) = (2
+ n− 1)	(
+ n− 1)

	(
+ 1)	(n)
for 
�1.

The eigenfunctions of the Laplace–Beltrami operator are the spherical harmonicsY
; more
precisely,

−�Y
 = 

Y
, 

 = 
(
+ n− 1).

The space of spherical harmonics of orderL or less will be denoted byVL := ∑L

=0V
;

it has dimensionN(n + 1, 
). Every functionf ∈ L2(Sn) can be expanded in terms of
spherical harmonics:

f =
∞∑

=0

N(n,
)∑
k=1

f̂
kY
k, f̂
k =
∫
Sn
f Y
k dS,

wheredS is the surface measure of the unit sphere. TheL2(Sn)-norm off , given by the
familiar formula

‖f ‖2 =
(∫

Sn
|f |2 dS

)1/2

,
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can also be expressed, via Parseval’s identity, as follows:

‖f ‖2 =
 ∞∑

=0

N(n,
)∑
k=1

|f̂
k|2
1/2

.

The Sobolev spaceHs := Hs(Sn) on the sphere is defined as follows:

Hs := {f ∈ L2(Sn) : ‖f ‖2Hs :=
∞∑

=0

(1+ 

)s
N(n,
)∑
k=1

|f̂
k|2 <∞}.

2.2. Interpolation of scattered data onSn

LetX = {x1, . . . , xm} be a finite set of distinct points onSn. The density of the setX is
measured by the mesh norm

hX = sup
y∈X

dist(y,X),

where dist(y,X)= inf x∈X �(y, x). Here� is the geodesic distance onSn which is defined
as�(x, y) = cos−1(x · y), wherex andy are represented as two unit vectors inRn+1. The
separation radius of the setX is defined via

qX = 1
2 min
j 
=k �(xj , xk).

It is easy to see thathX�qX; equality can hold only for a uniform distribution of points
on the circleS1. Themesh ratio�X := hX/qX�1 provides a measure of how uniformly
points inX are distributed onSn. If there is a constantC independent ofX such that�X�C

then the setX is calledquasi-uniform.
Bizonal functions onSn are functions that can be represented as�(x ·y) for all x, y ∈ Sn,

where�(t) is a continuous function on[−1,1]. We shall be concerned exclusively with
bizonal kernels of the type

�(x, y) = �(x · y) =
∞∑

=0

a
P
(n+ 1;x · y), a
�0,
∞∑

=0

a
 <∞, (1)

where{P
(n + 1; t)}∞
=0 is the sequence of(n + 1)-dimensional Legendre polynomials.
Recall from[16] that∫ 1

−1
P
(n+ 1; t)Pk(n+ 1; t)(1− t2)(n−2)/2 dt = 0 for 
 
= k

and ∫ 1

−1
[P
(n+ 1; t)]2(1− t2)(n−2)/2 dt = |Sn|

|Sn−1|N(n, 
) ,

where|Sn| is the surface area ofSn and|Sn−1| is the surface area ofSn−1.
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Thanks to the seminal work of Schoenberg[27], we know that such a� is positive
definite onSn, that is, the matrixA := [�(xi, xj )]mi,j=1 is positive semidefinite for every set
of distinct points{x1, . . . , xm} on Sn and every positive integerm. When the coefficients
a
 are positive for every
, we say that� is strictly positive definite. In this case the matrix
A becomes positive definite, hence invertible, for every set of distinct points{x1, . . . , xm}
onSn and everym (see[35]).
In particular, the following interpolationproblemadmits auniquesolution: givenastrictly

positive definite�, a continuous functionf onSn, a positive integerm, and a set of distinct
pointsX = {x1, . . . , xm} on Sn, there exists a unique sequence of numbers{cj }mj=1 such
that the function

fX(x) =
m∑
j=1

cj�(x, xj ) (2)

satisfies the interpolatory conditions

fX(xk) = f (xk), 1�k�m.

Using the addition theorem for spherical harmonics (see, for example,[17, p. 18]), we can
write

�(x, y) =
∞∑

=0

N(n,
)∑
k=1

�̂(
)Y
k(x)Y
k(y), where�̂(
) = |Sn|
N(n, 
)

a
. (3)

Throughout the paper, we make a further assumption that�̂(
)∼ (1 + 

)−� for some
� > n/2+ 2, i.e. there exist positive constants
1,
2 such that


1(1+ 

)−���̂(
)�
2(1+ 

)−�, 
�0. (4)

Thenative spaceinduced by� is defined to be the closure of the set

N� :=
f ∈ D′(Sn) : ‖f ‖2� =

∞∑

=0

N(n,
)∑
k=1

|f̂
k|2/�̂(
) <∞
 ,

whereD′(Sn) denotes the set of all tempered distributions defined onSn.
In what follows, the supremum norm inC(Sn) will be denoted by‖ · ‖; for later use, we

also introduce the following norm inC2k(Sn):

‖f ‖2k := max{‖f ‖, ‖�kf ‖}, f ∈ C2k(Sn).

The main result in[20, Theorem 3.2]asserts the following:

Theorem 2.1(Narcowich andWard[20]). Let � be an SBF of the form(3), with �̂(
)
satisfying condition(4) for � > 2k�n/2. If X = {x1, . . . , xm} is a set of distinct points on
Sn, f ∈ C2k(Sn), andfX is defined as in(2), then

‖f − fX‖�C��−2k
X h

2k−n/2
X ‖f ‖2k,
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whereC is independent off andX, andhX and�X are the mesh norm and mesh ratio for
the setX, respectively.

Remark. If themesh ratio�X is bounded by a constant, then the error estimates only depend
on the mesh norm, i.e.,

‖f − fX‖ = O(h2k−n/2X ).

2.3. Positive definite kernels and the power function

A conjugate symmetric, complex-valued kernel� ∈ C(Sn × Sn) ∩ H 2s(Sn × Sn) is
said to bepositive definiteif for every finite subsetX = {x1, . . . , xm} ⊂ Sn of m distinct
points, the matrixA with entriesAi,j = �(xi, xj ) is positive semidefinite. In terms of
distributions, the positive definiteness of� is equivalent to the following[5, Theorem 2.1]:
for every non-zero distributionw in the dual Sobolev spaceH−s(Sn),

(w ⊗ w,�) :=
∫
Sn
w(x)

(∫
Sn
w(y)�(x, y) dS(y)

)
dS(x)�0.

If (w ⊗ w,�) > 0 for everyw 
= 0, we will call� strictly positive definite. The kernel�
is positive definite (or strictly positive definite) if and only if all the coefficientsa
 in the
Legendre polynomial expansion (1) are non-negative (or positive)[18]. We define

� ∗ w(x) := (�x ⊗ w,�), x ∈ Sn,

where�x is the Dirac point evaluation functional. LetU be a finite-dimensional subspace
of functions inCk(Sn), and letU⊥ be a space of all distributions overCk(Sn) such that
(w, p) = 0 for allp ∈ U . Given a strictly positive definite kernel�, we can define an inner
product onU⊥ and the correspondent norm as

[v,w]� := (v ⊗ w,�), v, w ∈ U⊥, and��v��� := √[v, v]�, v ∈ U⊥.

The interpolation problem can be put into a distributional framework in the following way.
LetW = {w1, . . . , wm} be a linearly independent set of distributions defined onCk(Sn),
and letf be a function inCk(Sn). Given the datadj = (wj , f ), j = 1, . . . , m, we seek to
findw ∈ span{W} ∩ U⊥ andp ∈ U such thatfX = � ∗w+ p satisfies(wj , fX) = dj for
every 1�j�m, and iff ∈ U , thenfX =p= f . The latter requirement that the interpo-
lation process reproducesU implies that the setW |U = {w1|U , . . . , wm|U } spansU∗, the
dual ofU .
Suppose that the functionf generating the data has the formf = � ∗ v+ q, with q ∈ U

andv ∈ U⊥. Let � be a distribution defined on functions inCk(Sn), for example� = �x .
In order to estimate the errorf − fX, we need to estimate|(�x, f − fX)| for every value
of x. For a general�, in order to estimate|(�, f − fX)|, we observe that, by construction,
(wj , f − fX) = 0 for j = 1, . . . , m; and so if we can findcj ’s such that� −∑m

j=1 cjwj
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is in U⊥, then

(�, f − fX)=
� −

∑
j

cjwj ,� ∗ (v − w)+ q − p


=
� −

∑
j

cjwj ,� ∗ (v − w)


=
v − w, � −

∑
j

cjwj


�

. (5)

If we set� = w ∈ U⊥ ∩ span{W} in (5) then the left-hand side of (5) is 0 and the right-
hand side is[v − w,w]� = 0, since we can take allcj ’s to be 0. It then follows that
��v��2� = ��v − w��2� + ��w��2�, which yields

��w��� < ��v��� and��v − w��� < ��v���. (6)

By applying Schwarz’s inequality to the right-hand side of (5), and using (6), we obtain

|(�, f − fX)|���v������ −
∑
j

cjwj ���, where
∑
j

cjwj |U = �|U . (7)

We define thepower function[26] to be

P
�
�,W := min

��� −
∑
j

cjwj ��� :
∑
j

cjwj |U = �|U
 . (8)

Let �U ∈ U ⊗ U be an appropriate conjugate symmetric kernel that approximates�. We
define

�0 := |(�̄ ⊗ �,� − �U )|,
�1 := max

j
|(�̄ ⊗ wj ,� − �U )|

and

�2 := max
j,k

|(w̄k ⊗ wj ,� − �U )|.

Theorem 2.2(Narcowich andWard[21, Section 3]).For any set of coefficients satisfying
the constraint∑

j

cjwj |U = �|U ,

we have the following bound on the power function:

(P
�
�,W )

2��0 + 2‖c‖1�1 + ‖c‖21�2, where‖c‖1 =
∑
j

|cj |. (9)
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2.4. Norming sets

In order to bound the term‖c‖1 in the right-hand side of inequality (9), we shall employ
norming sets, the use of which in the context of scattered data interpolation was initiated in
[12].
Let V be a finite-dimensional vector space with norm‖ · ‖V and letZ ⊂ V ∗ be a finite

set of cardinalitym. We will say thatZ is a norming set forV if the mappingT : V →
T (V ) ⊂ Rm definedbyT (u) = (z(u))z∈Z is injective.TheoperatorT is called thesampling
operator. The norm of its inverse is given by

‖T −1‖ = sup
v∈V

{
‖v‖V : max

z∈Z |z(v)| = 1

}
.

Proposition 2.1(Mhaskar et al.[14, Proposition 4.1]).LetZ be a norming set forV with
T being the corresponding sampling operator. If
 ∈ V ∗ with ‖
‖V ∗ �A, then there exist
real numbers{az : z ∈ Z} depending only on
 such that for everyv ∈ V ,


(v) =
∑
z∈Z

azz(v), and
∑
z∈Z

|az|�A‖T −1‖.

3. Weak formulation of the PDE

In this section, we set up the weak formulation for a class of elliptic partial differential
equations on the unit sphere and prove a version of Cea’s lemma for our equation on spheres
(see[2] for a version onRn).
Let� be a non-zero real constant, and consider the partial differential equation

− �u(x)+ �2u(x) = f (x), x ∈ Sn. (10)

The weak formulation of this equation is〈
−�u+ �2u, v

〉
= 〈f, v〉 , ∀v ∈ H 1, where 〈u, v〉 :=

∫
Sn
uv dS.

Defining the bilinear form

a(u, v) :=
〈
−�u+ �2u, v

〉
,

we find that the weak formulation becomes

a(u, v) = 〈f, v〉 ∀v ∈ H 1.

Lemma 3.1. There exist positive constantsC�1 and��1 such that

|a(u, v)|�C‖u‖H1‖v‖H1 and|a(u, u)|��‖u‖2
H1.
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Proof.

a(u, v) =
∞∑

=0

N(n,
)∑
k=1

(

 + �2)̂u
kv̂
k

�

 ∞∑

=0

N(n,
)∑
k=1

(

 + �2)|̂u
k|2
1/2 ∞∑


=0

N(n,
)∑
k=1

(

 + �2)|̂v
k|2
1/2

� max{1,�2}‖u‖H1‖v‖H1.

We also have

a(u, u) =
∞∑

=0

N(n,
)∑
k=1

(

 + �2)|̂u
k|2� min{1,�2}
∞∑

=0

N(n,
)∑
k=1

(

 + 1)|̂u
k|2. �

The preceding lemma shows that the bilinear forma(u, v) is bounded and coercive, so
by the Lax–Milgram theorem (cf.[2]), the weak formulation has a unique solution. It is
easy to see that�i (x) := �(x, xi) = �(x · xi) is inH 1 since we require� > n/2+ 2. We
now define a finite dimensional subspace ofH 1(Sn):

VX := span{�i (x) : i = 1, . . . , m}.
The Ritz–Galerkin approximation problem is the following:

find uh ∈ VX such thata(uh, �) = 〈f, �〉 , ∀� ∈ VX. (11)

The following is a version of Cea’s lemma for unit spheres.

Lemma 3.2. Letu ∈ H 1(Sn) anduh ∈ VX be the solution of the Ritz–Galerkin approxi-
mation problem(11), then there exists a constantC�1 such that

‖u− uh‖H1 �C inf
v∈VX

‖u− v‖H1.

Proof.Note thata(u− uh, �) = 0 for all � ∈ VX. In particular,a(u− uh, v − uh) = 0 for
anyv ∈ VX. Thus,

a(u− uh, u− uh) = a(u− uh, u− v + v − uh) = a(u− uh, u− v).

By Lemma3.1, we have

�‖u− uh‖2H1 � a(u− uh, u− uh) = a(u− uh, u− v)

� C‖u− uh‖H1‖u− v‖H1.

Dividing both sides by‖u− uh‖ and taking infimum overv ∈ VX, we obtain the required
result. �

Lemma 3.3. For a functionu ∈ H 1, the following inequality holds:

‖u‖H1 �(‖�u‖2 + ‖u‖2)1/2‖u‖1/22 .
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Proof.

‖u‖2
H1 =

∞∑

=0

N(n,
)∑
k=1

(

 + 1)|̂u
k|2

�
∞∑

=0

N(n,
)∑
k=1



 |̂u
k|2 +
∞∑

=0

N(n,
)∑
k=1

|̂u
k|2

�

 ∞∑

=0

N(n,
)∑
k=1


2
 |̂u
k|2
1/2 ∞∑


=0

N(n,
)∑
k=1

|̂u
k|2
1/2

+
∞∑

=0

N(n,
)∑
k=1

|̂u
k|2

= ‖�u‖2‖u‖2 + ‖u‖22. �

The foregoing lemma enables us to use recent results in[20] to estimate‖u − uX‖H1,
whereuX ∈ VX is the interpolant ofu onX, i.eu(xj ) = uX(xj ) for all xj ∈ X.

4. Estimate for ‖�su− �suX‖

We shall estimate the error in two steps: firstly,u is assumed to be in the native space
N� and the error will be bounded by a factor of‖u‖�; secondly, we letu escape to a larger
spaceC2k(Sn) and estimate the error in terms of‖u‖2k.
4.1. Estimate in the native space norm

Before proceeding to the main estimate, we need the Markov–Bernstein inequality for
spherical polynomials of orderL. A proof of this result may be found in[22].

Theorem 4.1. If PL ∈ VL, then
‖�PL‖�DnL

2‖PL‖,
where the constantDn depends only on the dimension of the ambient space.

Remark. It is known thatD2 = 4 (see[21]).

Corollary 4.1. If PL ∈ VL ands is an integer,then

‖�sPL‖�Ds
nL

2s‖PL‖.

Next we need to adapt[21, Theorem 6.4]to the caseSn.

Proposition 4.1. If the mesh norm ofX satisfieshX < 1/(2L), then for any fixedx there
exist numbers�j (x),1�j�m, such that

m∑
j=1

�j (x)Y (xj ) = �sY (x) f or all Y ∈ VL, and
m∑
j=1

|�j (x)|�2Ds
nL

2.
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Proof. Let T be the point-sampling operator, namely,T (Y ) = (Y (x1), . . . , Y (xm)), and
let 
(Y ) = �sY (x). The upper bound for‖
‖ is given by Corollary4.1. Moreover, if the
mesh normhX < 1/(2L) then‖T −1‖�2 (see[12]). The required result now follows via
Proposition2.1. �
Defining the ordinary differential operator

L := −(1− t2)(2−n)/2 d
dt
(1− t2)n/2

d

dt
= −(1− t2)

(
d

dt

)2

+ nt
d

dt
,

we recall from[17, p. 38]that the(n+ 1)-dimensional Legendre polynomialsP
(n+ 1; t)
satisfy the differential equation

LP
(n+ 1; t) = 

P
(n+ 1; t).
The operatorL can be iterated asLk+1P = L(LkP ) for k�1. We approximate the kernel
� by the truncated kernel�L:

�L(x, y) = �L(x · y) =
L∑

=0

a
P
(n+ 1;x · y),

which belongs to the spaceVL ⊗ VL.

Lemma 4.1. Let�(t) be a univariate function which can be expanded as a series of Leg-
endre polynomials as in(1). If �(t) ∈ C(2k+2j)[−1,1], then

|Lk[� − �L](x · y)|� Lk+j [� − �L](1)
(L+ n− 1)2j

� Lk+j�(1)
(L+ n− 1)2j

.

Proof.We have

|Lk�(x · y)− Lk�L(x · y)|�
∑


�L+1


k
a
|P
(n+ 1;x · y)|.

Since the Legendre polynomials satisfy the inequality|P
(n+1; t)|�P
(n+1;1)= 1 for
everyt in [−1,1] (see[17, p. 15]), we have∑


>L


k
a
P
(n+ 1; t) �
∑

>L


k
a
P
(n+ 1;1)

� (L+ n− 1)−2j
∑

>L


k+j
 a
P
(n+ 1;1)

� Lk+j [� − �L](1)
(L+ n− 1)2j

.

The lemma follows by observing thatLk+j [� − �L](1)�Lk+j�(1). �
We are now in a position to obtain an error estimate for�s(u − uX), whereuX is the

interpolant ofu on the setX.
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Proposition 4.2. Suppose� is a positive definite kernel of the form(3),�(t) ∈ C4s[−1,1],
and letX be a finite set of distinct points onSn with mesh normhX�1/(2L). If u belongs
to the native spaceN� anduX is an interpolant of the form(2)which interpolatesu on the
setX, then there is a constantC > 0 independent ofu andX so that

‖�su− �suX‖�C

( ∞∑

>L

�̂(
)N(n, 
)
2s


)1/2

‖u‖�.

Proof. Recalling the distributional framework set out in Section 2.3, we consider the fol-
lowing particular linear functional:

�(u) = �su(x).

For a given pointx ∈ Sn, we shall use inequality (7) to estimate|�su(x)−�suX(x)|. Now
Theorem2.2and Proposition4.1provide the following bound:

(P
�
�,W )

2��0 + 4Ds
nL

2s�1 + 4D2s
n L

4s�2,

where the�j ’s are given by

�0 = |L2s�(1)− L2s�L(1)|,
�1 = max

j
|Ls�(x · xj )− Ls�L(x · xj )|,

and

�2 = max
j,k

|�(xk · xj )− �L(xk · xj )|.

Applying Lemma4.1 to bound these quantities and then using the resulting bounds in the
power-function estimate above, we obtain

(P
�
�,W )

2 �
(
1+ 4Ds

nL
2s

(L+ n− 1)2s
+ 4D2s

n L
4s

(L+ n− 1)4s

)
L2s[� − �L](1)

� CL2s[� − �L](1),
whereC is a constant that depends only onn ands. The required result follows from the
relation

L2s[� − �L](1)=
1

|Sn|
∑

>L


2s
 �̂(
)N(n, 
). �

We now derive a simple consequence for our choice of kernels.

Corollary 4.2. Suppose�(t) ∈ C4s[−1,1],and�̂(
)∼ (1+

)−� for some� > n/2+2s.
Assume that the mesh normhX of the setX satisfies the condition1/(2L+2)�hX�1/2L.
Then there exists a constantC > 0 independent ofu andX so that

‖�su− �suX‖�Ch
�−n/2−2s
X ‖u‖�.
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Proof. Since(1+ 

)�C
2 andN(n, 
) = O(
n−1) we have

∞∑

=L+1

�̂(
)N(n, 
)
2s
 �C

∫ ∞

L

xn−1+4s−2� dx�CLn+4s−2�.

The result follows directly from Proposition4.2and the condition

1/(2L+ 2)�hX�1/2L. �

4.2. Estimate in the supremum norm

We first state several results concerning approximation of functions onSn by spherical
harmonics inVL.These results, obtainedbyPawelke[22,23], involve thenotionsof spherical
mean and spherical modulus of continuity (see below).We shall use Pawelke’s results later
in the section.
Let u ∈ C(Sn), x ∈ Sn, and 0< h��. We define the spherical mean ofu over the

spherical cap of radiush centered atx as follows:

Thu(x) := 1

|Sn−1|(sin h)n−1

∫
x·y=cosh

u(y) d�x(y),

whered�x is the volume element corresponding tox · y = cos(h). The spherical modulus
of continuity ofu is defined to be

�(u, �) := sup
0<h� �

‖Thu− u‖, � > 0.

Givenu ∈ C(Sn), we define the distance fromu to the polynomial spaceVL in the usual
manner:

dist(u,VL) := inf
P∈VL

‖u− P ‖.

Theorem 4.2(Pawelke[22,23]). Supposeu ∈ C2k(Sn) andL ∈ Z+. There is a constant
M, independent of bothu andL, for which

dist(u,VL)�M�(u; 1/L), and dist(u,VL)�MkL−2k‖�ku‖, k ∈ Z+.

The remaining approximation theorems that we will use in the proof deal with the norms
of iterates of� applied to the best and near-best approximants fromVL.

Theorem 4.3(Pawelke[22, Satz 4.4]).Supposeu ∈ C2k(Sn), and letPL be the best ap-
proximation tou from VL, i.e., ‖u − PL‖ = dist(u,VL). Then there exists a constantC,
independent ofu andL, for which

‖�kPL‖�C‖�ku‖.

The preceding theorem has been extended in[20] to a class of near-best approximants
from VL.
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Theorem 4.4(Narcowich andWard[20, Corollary 2.5]).Let u ∈ C2k(Sn) and letQL ∈
VL for L = 1,2, . . . , be a sequence of polynomials satisfying‖u−QL‖�K dist(u,VL),
withK independent ofu andL. Then there is a constantC1, independent off andL, such
that

‖�kQL‖�C1‖�ku‖.

In the proof of the main result, we need to construct for everyu ∈ C(Sn), spherical
harmonics that are both near-best approximants tou from VL and also interpolateu on the
point setX. This is precisely the content of the following theorem:

Theorem 4.5(Narcowich andWard[20, Theorem 3.1]).LetX ⊂ Sn be a finite set of dis-
tinct points with separation radiusqX and let
 > 1. If we setL = �M(
+1)

qX(
−1)�, with M
as in Theorem4.2, then foru ∈ C(Sn) there exists a spherical harmonicQL ∈ VL that
interpolatesu onX and also satisfies the estimate

‖u−QL‖�(1+ 
)dist(u,VL).

Lemma 4.2. Supposeu ∈ C2s(Sn), wheres is a positive integer,and letPL be the best
approximation tou from VL, i.e., ‖u − PL‖ = dist(u,VL). Then there is a constantC,
independent ofu andL, such that

‖�su− �sPL‖�C dist(�su,VL).

Proof.We prove the lemma by induction ons. We consider the cases = 1. Note that ifQ
is a spherical harmonic of degreeL, forL > 0, then so is�Q, because spherical harmonics
are eigenfunctions of�. Therefore, the space of all spherical harmonics of degree�L

except constants, denoted byVL\V0, is isomorphic to�(VL\V0). LetQ be a polynomial in
VL without constant term so that�Q is the best approximation to�u. So

‖�u− �Q‖ = dist(�u,VL).
LetR ∈ VL be the best approximation tou−Q, so that

‖R − (u−Q)‖ = dist(u−Q,VL) = dist(u,VL).
SincePL is unique, we obtainPL = R +Q. By the estimate in Theorem4.3,

‖�R‖�C‖�u− �Q‖ = C dist(�u,VL).
Thus

‖�u− �PL‖�‖�u− �Q‖ + ‖�R‖�2C dist(�u,VL).
Now let s > 1, and suppose that there is a constantC0 so that

‖�s−1u− �s−1PL‖�C0 dist(�
s−1u,VL).

Using the induction hypothesis for�u and�Q, we have

‖�s−1�u− �s−1�Q‖ = ‖�su− �sQ‖�C0 dist(�
su,VL).
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Using Theorem4.3once again, we have

‖�sR‖�C1‖�su− �sQ‖�C2 dist(�
su,VL),

whereC2 = C1C0. Thus

‖�su− �sPL‖�‖�su− �sQ‖ + ‖�sR‖�C3 dist(�
su,VL),

with C3 = max(C0, C2). �
We extend the result of the previous lemma to a broader class of near best approximants

to u.

Lemma 4.3. Suppose thatu ∈ C2k(Sn) andQL is a near best approximation tou from
VL in the sense that there is a constantK, independent ofL andu, so that

‖u−QL‖�K dist(u,VL).
Then there exists a constantC2 so that for any integers�k,

‖�su− �sQL‖�C2L
−2k+2s‖�ku‖.

Proof. Let PL be the best approximation tou from VL. The preceding lemma implies the
estimate

‖�su− �sPL‖�C dist(�su,VL).
By the Markov–Bernstein inequality,

‖�sPL − �sQL‖ � Ds
nL

2s‖PL −QL‖
� Ds

nL
2s(‖PL − u‖ + ‖u−QL‖)

� Ds
nL

2s(K + 1)dist(u,VL).
Combining the two estimates above, we obtain

‖�su− �sQL‖ � ‖�su− �sPL‖ + ‖�sPL − �sQL‖
� C1 dist(�

su,VL)+DL2s dist(u,VL),
whereD := Ds

n(K + 1). Now by the second part of Theorem4.2,

dist(�su,VL)�M1L
−2k+2s‖�ku‖

and

dist(u,VL)�M2L
−2k‖�ku‖,

so the required result follows by settingC2 = max{CM1,DM2}. �
Nowwe adapt the proof in[20] to estimate‖u−uX‖ for u ∈ C2k(Sn), which is in general

a larger space of functions than the native space induced by the kernel�.

Theorem 4.6. Let�beanSBFsatisfyinĝ�(
)∼ (1+

)−� andsuppose that� > 2k�n/2+
2s. LetX be a quasi-uniform(i.e. the mesh ratio is bounded)discrete subset ofSn with



138 Q.T. Le Gia / Journal of Approximation Theory 130 (2004) 123–147

mesh normhX. If u ∈ C2k(Sn) anduX ∈ VX interpolatesu onX as in (2), then for any
nonnegative integers < k − n/4, there exists a constantC independent ofu andX such
that

‖�su− �suX‖�Ch
2k−2s−n/2
X ‖u‖2k.

Proof.Applying Theorem4.5with 
 = 3, we obtain aPL ∈ VL that interpolatesu onX,
whereL = �2M/qX�,M is as in Theorem4.2, and

‖u− PL‖�4 dist(u,VL).
Let PX be the interpolant ofPL in the spaceVX; then

‖�su− �suX‖�‖�su− �sPL‖ + ‖�sPL − �sPX‖ + ‖�s(PX − uX)‖. (12)

SincePX(xj ) = PL(xj ) = u(xj ) = uX(xj ) for all xj ∈ X and bothPX anduX lie in the
same finite-dimensional spaceVX, we have PX ≡ uX and the final term in the previous
inequality vanishes. By Lemma4.3, we have the estimate

‖�su− �sPL‖�C0L
−2k+2s‖u‖2k.

Now the assumption on̂�(
) guarantees that Corollary4.2 is applicable and, since the
norms‖ · ‖� and‖ · ‖H � are equivalent, we can estimate the second term on the right hand
side of (12) as follows:

‖�sPL − �sPX‖�C1h
�−n/2−2s
X ‖PL‖H � .

Using the definition of the Sobolev norm and the fact thatPL is a polynomial, we obtain

‖PL‖H � �(1+ 
L)�/2−k‖PL‖H2k �2k|Sn|1/2(1+ 
L)�/2−k‖PL‖2k.
Since‖PL‖�5‖u‖ by assumption, Theorem4.4 implies that‖�kPL‖�R‖�ku‖, so that

‖PL‖2k� max{5, R}‖u‖2k.
So, if we setC2 = 2k|Sn|1/2max{5, R} then

‖�sPL − �sPX‖�C2h
�−n/2−2s
X (1+ 
L)�/2−k‖u‖2k. (13)

From (12), (13) and
L = L(L+ n− 1)�CL2, we find that

‖�su− �suX‖ � (C1L
2s−2k + C2L

�−2kh
�−n/2−2s
X )‖u‖2k

� (C1L
n/2+2s−2k + C2L

�−2kh
�−n/2−2s
X )‖u‖2k

� [C1(hXL)
n/2+2s−2k + C2(hXL)

�−2k]h2k−n/2−2s
X ‖u‖2k.

Using the fact thatL = �2M/qX� = �2M�X/hX�, we get

‖�su− �suX‖�(C3�
n/2+2s−2k
X + C4�

�−2k
X )h

2k−n/2−2s
X ‖u‖2k.

Finally, since�X�1 and� > 2s + n/2, it follows that

‖�su− �suX‖�C��−2k
X h

2k−n/2−2s
X ‖u‖2k. �
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5. The main theorem

Recall from Section 3 the following weak formulation of (10):〈
−�u+ �2u, v

〉
= 〈f, v〉 , ∀v ∈ H 1, (14)

and the fact that its solutionu is being approximated byuh, which, in turn, satisfies the
following condition:

uh ∈ VX := span{�(xi, ·) : xi ∈ X}
such that〈

−�uh + �2uh, �
〉
= 〈f, �〉 , ∀� ∈ VX. (15)

Having assembled all the necessary ingredients, we are now ready to give our error bound
for u− uh:

Theorem 5.1. Assume that the exact solutionu of the weak formulation(14) belongs to
C2k(Sn). The approximate solutionuh of the Ritz Galerkin approximation problem(15) is
constructed from shifts of a kernel of the form(3) satisfying�̂(
)∼ (1+ 

)−� (for some
� > 2k) and a quasi-uniform discrete setX ⊂ Sn with mesh normhX. Then there is a
positive constantC independent ofu andhX such that

‖u− uh‖H1 �Ch
2k−n/2−1
X ‖u‖2k.

Proof. By Theorem4.6, we have a constantC1 > 0 so that

‖�u− �uX‖2�
√|Sn|‖�u− �uX‖�C1h

2k−n/2−2
X ‖u‖2k.

By Theorem2.1we also have

‖u− uX‖2�
√|Sn|‖u− uX‖�C2h

2k−n/2
X ‖u‖2k.

So by Lemma3.3, we conclude that

‖u− uX‖H1 �C3h
2k−n/2
X

√
1+ h−2

X ‖u‖2k.
Now, using Cea’s lemma (Lemma3.2), we obtain the final estimate

‖u− uh‖H1 � C‖u− uX‖H1 �CC3h
2k−n/2
X

√
1+ h−2

X ‖u‖2k
� C4h

2k−n/2−1
X ‖u‖2k.

In the proof,Ck, for k = 1,2, 3,4, are generic constants independent ofu andX. �

6. Implementation onS2

Problems arising in satellite tracking and physical geodesy are still challenging because
of the nature of the acquired data. If the data are localized, approximation problems can be
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solved through application of methods designed for two-dimensional Euclidean space (cf.,
e.g.,[8] and references therein). However, problems involve essentially the entire surface
of the sphere, or a sufficiently large part that modeling the data as arising in two space is no
longer appropriate. In this section, we present only a test example to illustrate the Galerkin
method onS2 in which the approximate solution is constructed from various scattered sets
X with different cardinality. It is assumed that the data is available globally with sufficient
density and uniformity. In the implementation, there are two main issues to be addressed:
the quadrature rule used in approximating the bilinear forma(u, v) and the construction of
spherical basis functions.
Since�(x, y) is a zonal function, we can reduce the surface integrals in the bilinear form

a(�(xi, ·),�(xj , ·)) into one-dimensional series of Legendre polynomials as discussed in
Section 6.1. For the surface integrals〈f,�(xi, ·)〉’s, we have to derive a quadrature rule
over the surface of the unit sphere as in Section 6.2.

6.1. Inner product of two zonal functions

Let �(t) and�(t), for t ∈ [−1,1], be two zonal functions onS2. We can expand�(t)
and�(t) in terms of series of Legendre polynomials

�(t) =
∞∑

=0

a
P
(t), �(t) =
∞∑

=0

b
P
(t),

where

a
 =
∫ +1
−1 �(t)P
(t) dt∫ +1
−1 [P
(t)]2 dt

= 2
+ 1

2

∫ +1

−1
�(t)P
(t) dt (16)

and

b
 =
∫ +1
−1 �(t)P
(t) dt∫ +1
−1 [P
(t)]2 dt

= 2
+ 1

2

∫ +1

−1
�(t)P
(t) dt. (17)

In the approximation of the bilinear forma(u, v) = 〈−�u+ �2u, v
〉
, we need the following

useful lemma:

Lemma 6.1. Let�(x, y) = �(x · y) and�(x, y) = �(x · y) be two zonal functions on
S2. For two distinct fixed pointsp, q ∈ S2, the following relation holds:∫

S2
�(p · x)�(q · x) dS(x) = 4�

∞∑

=0

a
b


(2
+ 1)
P
(p · q).

Proof.We have

�(p · x) =
∞∑

=0

a
P
(p · x) = 4�
∞∑

=0

a


(2
+ 1)


∑
k=−


Y
,k(p)Y
,k(x)



Q.T. Le Gia / Journal of Approximation Theory 130 (2004) 123–147 141

and

�(q · x) =
∞∑

=0

b
P
(q · x) = 4�
∞∑

=0

b


(2
+ 1)


∑
k=−


Y
,k(q)Y
,k(x).

Since{Y
,k : 
 = 0, 1,2, . . . ; k = −
 . . . 
} is an orthonormal set, we can use Parseval’s
identity to obtain∫

S2
�(p · x)�(q · x) dS(x)= 16�2

∞∑

=0

a
b


(2
+ 1)2


∑
k=−


Y
,k(p)Y
,k(q)

= 16�2
∞∑

=0

a
b


(2
+ 1)2
(2
+ 1)

4�
P
(p · q)

= 4�
∞∑

=0

a
b


(2
+ 1)
P
(p · q). �

For numerical approximation, the integration in (16) and (17) can be approximated by a
Gaussian quadrature formula over the interval[−1,+1]. If the function� has�̂(
)∼ (1+


)−� as in condition (4) thena
∼ (1+ 

)−�(2
+ 1)∼ 
−2�+1. We require that� > 1/2
and the one-dimensional Gaussian quadrature formula used in (16) and (17) should be exact
up to polynomials of degreeL. In our numerical experiments,L = 6000 and� = 9/2, so
the smallest absolute valuea
 being computed is about 10−30.

6.2. Quadrature formula

We seek a spherical quadrature rule that integrates exactly all polynomials up to a certain
degreeL, i.e., we seek a set of points� := {�1, . . . , �N } and a set of positive weights
{w1, . . . , wN } (Fig. 1) such that

∫
S2
P(x) dS =

N∑
j=1

wjP (�j ), ∀P ∈ VL.

If all the weights are equal, namelywj = 4�/N for all j = 1, . . . , N, then the set� is
called a sphericalL-design, see[1,4,29]. It can be shown that a pair of antipodal points, the
vertices of a regular tetrahedron, the regular octahedron, and the regular icosahedron give
1-, 2-, and 5-designs, respectively. If the weights are not equal and the points are chosen
independent from the scattered data then there are many research directions which are still
open[3,13,25,30].
The following existence theorem, proved in[14], provides in principle a possible quadra-

ture formula forSn.

Theorem 6.1. LetL be an integer withL��/h�, whereh� is the mesh norm of the set
� and� is some real constant. Then there exist nonnegative weights{wj : j = 1, . . . , N}
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Fig. 1. Weights associated with 2500 quadrature points. The associated quadrature rule integrates exactly all
polynomials up to degree 45.

such that

∫
Sn
P (x) dS =

N∑
j=1

wjP (�j ), ∀P ∈ VL,

and the cardinality of the set of weights,N , is comparable to the dimension ofVL.

Here we shall use the set of points that is constructed by dividing the surface of the
sphere intoN cells of roughly equal area (see[13]). Note that the set of quadrature points
� are constructed independently from the set of scattered dataX. We investigate only the
dependency between the rate of approximation and the mesh normhX of the scattered set
X used to construct the approximate solutionuh.
Givenw := {w1, . . . , wN }, the weights are computed by solving the following quadratic

programming problem:

min w · wT
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subject to the following linear constraints:

N∑
j=1

wjY
,k(�j ) = 4�Y0,0�
,0, 
 = 0, . . . , L, −
�k�
,

wj �0, j = 1, . . . , N.

This optimization program can be solved numerically using the subroutinequadprog in
MATLAB 6.0. The strategy is to start with a high value ofL, sayL = �√N − 1#, and step
it down by 1 until we reach a value ofL for which we obtain a solution.

6.3. The spherical basis functions

In [32,33],Wendland introduced a class of locally supported positive definite radial basis
functions defined onRn+1. These functions�(x) are rotation invariant and are thus function
of |x| only. So the corresponding convolution kernel�(x − y), x, y ∈ Sn, is a function of
|x − y| = √

2− 2x · y. We may therefore define a function

�(x, y) = �(x · y) := �(x − y), x, y ∈ Sn. (18)

Note that�(x, y) inherits theproperty of positivedefiniteness from�, and̂�(
)∼ (1+

)−�

for some� > 0 (see Section 4 in[20]).
For our numerical study, we use the function�(r) = (1− r)8+(32r3+ 25r2+ 8r+ 1) ∈

C6(R3), wherer = √
2− 2x · y. It is shown in[20] that the kernel�(x, y) induced by

�(r) satisfieŝ�(
)∼ (1+ 

)3/2+3∼ 
9. The support of�(r) has radius 1, and hence for
a fixed x ∈ S2, the support of�(x, y) is {y ∈ S2 : cos�(x, y)�1/2}, i.e., the spherical
cap of radius�/3 centered atx. If we scale the support of� by a factor of� > 0, the
strictly positive definiteness of� is unchanged, but the rate of approximation will change
according to�. The detailed results will be presented in a forthcoming paper.

Under the assumption that the collected data is abundant on the global scale, the sets
of scattered data pointsX used in the construction of the SBFs are minimized energy
points[30]. These points are generated using optimization packages, and are available at
http://www.maths.unsw.edu.au/∼rsw/Sphere.

6.4. Numerical results

In our numerical experiments, we consider two examples: in one example the function
f is a zonal function (i.e.f (x) depends only on the geodesic distance fromx ∈ S2 to the
north pole(0, 0, 1)T ) and in another, the functionf is a spherical harmonic.
The quadrature rule used in the approximation of the bilinear forma(·, ·) and the surface

integral〈f, ·〉 are fixed, only the scattered setX for the SBFs varies in size.
The experiments use various values of�, namely� = 0.01;0.1;1.0; 10. The errors

are computed over a gridC of 104 points on the sphere. The
∞ errors are computed

http://www.maths.unsw.edu.au/~rsw/Sphere
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Table 1
Errors for Example 1

� m = |X| hX(deg) Rate e∞ Rate

0.01 64 17.5451 0.1324
225 9.1750 1.9123 0.0146 9.0684
400 6.5092 1.4095 0.0026 5.6154
784 5.3452 1.2177 9.3355e− 04 2.7851
900 5.0092 1.0670 9.9907e− 04 0.9344

0.1 64 17.5451 0.1294
225 9.1750 1.9123 0.0078 16.5897
400 6.5092 1.4095 0.0024 3.2500
784 5.3452 1.2177 5.0605e− 04 4.7426
900 5.0092 1.0670 5.4645e− 04 0.9261

1.0 64 17.5451 0.1105
225 9.1750 1.9123 0.0077 14.3506
784 5.3452 1.7165 5.0050e− 04 15.3846
900 5.0092 1.0671 7.3199e− 04 0.6837
1681 3.6278 1.3808 9.0342e− 04 0.8102

10 64 17.5451 0.1193
225 9.1750 1.9123 0.0079 15.1013
400 6.5092 1.4095 0.0024 3.2917
784 5.3452 1.2177 6.8522e− 04 3.5025
900 5.0092 1.0670 0.0020

as follows:

e∞ := max
�∈C

|u(�)− uh(�)|.

Example 1. We aim to solve numerically the following differential equation:

−�u+ �2u = −112(1−√
2− 2z)4+(25z2 − 9z+ 4z

√
2− 2z− 15),

where(x, y, z) ∈ R3 are points satisfyingx2 + y2 + z2 = 1. The exact solution of the
differential equation isu = (1−√

2− 2z)6+(35(2− 2z)+ 18
√
2− 2z+ 3)which belongs

toC4(S2). In this example, sincef is a zonal function, the integral
〈
f,�j

〉
is approximated

by a one-dimensional Gaussian rules used in computinga(·, ·) as mentioned in Section 6.1.
The exact solutionu belongs toC4(S2), so Theorem4.6predicts the errors‖u− uh‖H1 is
aboutO(h4−2/2−1

X ) = O(h2X). Table 1 shows that for� close to 1.0 andqX not too small
(the condition number of the matrixA with Aij = [a(�i ,�j )] is sensitive to the separation
radiusqX of the discrete setX), the supremum errors‖u− uh‖ can achieve up toO(h4X),
which implies that the errors‖u− uh‖H1 could be improved toO(h3X).

Example 2. We consider the approximation of the following differential equation:

−�u+ �2u = (2+ �2) sin(�) cos(�), � ∈ [0,�], � ∈ [0, 2�].
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Table 2
Errors for Example 2

� m = |X| hX (degree) Rate e∞ Rate

0.01 784 5.3452 1.4326e− 05
900 5.0092 1.0671 2.6977e− 06 5.3104
1600 3.7585 1.3328 1.0766e− 06 2.5058
1681 3.6278 1.0360 1.1171e− 06 0.9637
2500 2.9891 1.2137 1.9940e− 06 0.5602

0.1 784 5.3452 3.6315e− 06
900 5.0092 1.0671 3.4122e− 06 1.0642694
1600 3.7585 1.3328 5.2482e− 07 6.5016577
1681 3.6278 1.0360 5.2527e− 07 0.9991433
2500 2.9891 1.2137 5.0058e− 07 1.0493228

1.0 784 5.3452 4.9329e− 06
900 5.0092 1.0671 3.0495e− 06 1.6176094
1600 3.7585 1.3328 6.7267e− 07 4.5334265
1681 3.6278 1.0360 6.0382e− 07 1.114024
2500 2.9891 1.2137 4.6939e− 07 1.286393

10 784 5.3452 6.4366e− 06
900 5.0092 1.0671 3.9394e− 06 1.6339036
1600 3.7585 1.3328 1.7974e− 06 2.1917214
1681 3.6278 1.0360 1.6789e− 06 1.0705819
2500 2.9891 1.2137 1.1070e− 06 1.5166215

The exact solution isu(�, �) = sin(�) cos(�). In this example, the surface quadrature
mentioned in Section 6.2 is used to approximate

〈
f,�j

〉
. The exact solutionu is a spherical

harmonic, sou belongs to the native space associated with the SBFs (cf. Section 6.2), which
isH 9/2(S2), and hence by Corollary4.2, the‖u−uh‖H1 errors should beO(h9/2−2/2−1

X ) =
O(h5/2X ). Table 2 shows that under appropriate conditions for�andqX, the supremumerrors
‖u−uh‖ can achieve up toO(h4X), which implies the errors‖u−uh‖H1 could be improved
toO(h3X).

Tables 1 and 2 show the errors between the exact solution and the approximate solution
obtained via the Galerkin method using the SBFs�(x, y) centered atX as in (18).
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